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Higher-Order Cylindrical Surface-Wave Modes

JEAN Y. SAVARD

Mxfrac~-A general theory of the propagation of higher-order modes

on cylindrical surface-wave structures is examined and applied to the

dielectric-clad rod.

A theory is developed in which the boundary conditions at the guide

are specified hy an impedance dyadic. The characteristic equation for the

structure is then obtained in terms of the elements of the dyadic. The

equation is solved and yields a set of conditions which are satisfied by the

values of the dyadic elements at the cutoff points for each of the higher-

order modes.

A mode without a cutoff frequency is shown to exist on the structure

used. The relationship between the guide wavelength and frequency has

been verified experimentally.

INTRODUCTION

A

CONSIDERABLE amount of work has been done

both on the theoretical and experimental aspects of

propagation on single-wire transmission lines since

1930. Many structures have been found to be capable of sup-

porting a surface wave. Among these are the dielectric rod,

the dielectric-coated conductor, and the corrugated wire

[1]-[5].

Barlow and Karbowiak [1] have investigated the dielec-

tric-coated conductor and the corrugated wire for the special

case of the symmetrical modes. Their analysis was based on

surface impedances of the different structures used. The case

of higher-order modes on the dielectric-clad rod was at-
tempted by Hersch [2] by matching the fields at the ap-

propriate boundary. However, his numerical calculations

are in error.

Work on the dielectric rod for the symmetrical and higher-

order modes was first done by Jouguet [3] using an analytic-

graphical method based on the behavior of the fields near

the cutoff region. Brown [4] has obtained similar results by

using an extension of the surface impedance concept.

This paper is based on a generalization of the surface im-

pedance method. The properties of the guiding structures

are specified by an impedance dyadic enabling the character-

istic equation to be derived as a function of the elements of

the dyadic. This equation is then examined to obtain the

conditions satisfied by the elements of the dyadic near the

cutoff region. The method is very general and has the ad-

vantage of giving the solutions for any cylindrical structure

provided the radiation condition at infinity is satisfied.

The theory has been applied to the dielectric-clad rod.

Finally an experimental verification was obtained of the rela-

tionship between the guide wavelength and frequency for the

dielectric-clad rod.

IMPEDANCE DYADIC METHOD

Consider a reciprocal surface waveguide of circular sym-

metry (Fig. 1). Suppose the boundary conditions satisfied
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Fig. 1. Surface waveguide.

by the fields at the interface between the waveguide and the

air are

ET=ix. [lrx HT] (1)

where ET and HT represent the tangential components of

the vectors E and H on the cylinder at r= b, 1, is the unit

vector normal to the cylinder and X is the impedance dyadic

defined as

X = A’IIlglg+ Xltlalz

+ X,,lzllj + X,,l,lz.
(2)

The fields expressions for the region (0) b< r< cc are

H,, =

[ 1
— = ~noHn(D(aT) — ~ jjn”Hm(l)’(a~) Fn

a% 0!

Ho” =
[ 1

–i ~ a~OH~(l)’(ar) + y b~OH~flJ(ar) F.
a azr

H+” = b.OHn(lj (ar)l’.
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where wave mode, it follows that CO.cannot be positive for frequen-

Fn = exp {i[n~ – hz + tit]} (4)
ties less than u.. However, there is the possibility of cw being

zero for a range of frequency below w., but the surface wave
az = u2PCl@— hz = kos _ h2. (.5) Correspondkg to a. zero is not a true surface wave. We then

In these expressions “’” denotes a derivative with respect to say that if a. is zero at UC,then WCis the cutoff frequency for

the argument ar. the particular surface wave considered for frequencies

As surface-wave propagation is considered and as the greater than u,. Hence, it is concluded that, at wC,the cutoff

fields are described by HnflJ(ar) for the radial dependence, it frequency for a particular surface-wave mode,

follows that a must have an argument of 7r/2, so ?. 0+0. (16)

C2 = km (6)
It is now possible to proceed, on this hypothesis, to the deter-

Substituting (3) and (6) into (1) and eliminating the con- mination of the conditions to be satisfied at w. by the ele-

stants an” and b.” yields the following for the characteristic ments of the reactance dyadic in the characteristic equation.

equation Using the asymptotic development of Hfifl)(iw) for w-+0

[

1 X122 – X11X22 1
h’(w) – L(w) — +—~

wpob x22 weob X22 1
-~~l(’)(~w) =; - ; + ‘w k% : + 0(W8 log w)’

1

[()

nh 2

1
+::g+;g =0 (7)

(n = 1) (17)—— —
h? W2

where (2Y [(:)-21

p+lT~n(lJ(~w) R (n – 1)! ~ + O

1 Iln(’J’(&b) 1 ~n(l)’(~~)

$.(w) = — — . (8) (n+ 1) (18)

zhob H.(lJ(iaob) – ~ ~n(l)(iW)

it is easily verified that
Since a has an argument of 7r/2, this implies that h must

exceed ko and that w= aob must be positive. Further, the

group velocity which is given by dw/dh must be less than V,
+1(W) =’; – log;

the velocity of electromagnetic waves in free space. Hence,

since

~02 = h2 _ ~02 (9) +0[w2(1+10’Hll ‘n=l) ‘1’)

dew) dh
— = h ~ – W/.LCI@.

ao dw
(lo) lfo.(w) E; + ~(n : ~, + O(W2) (n # 1) (20)

But, Substituting (19) and (20) into the characteristic equation

dh 1 _ yields for n= 1
~w > y = <poell (11)

[ 1[

1 X122 – X11X22
;Iog; + +–Iog; —

and, therefore, wpob x22

since,

h>ko

it follows that

(12)
1

1

1 Xll
+— ~ +~~++—— = o (21)

wcob Xn liob W2 X22 k02b2 X22

(13)
and for n# 1

(14) A A –
[

1

1[
1 X122 – X11X22

;+
n—lw2 ‘(n – 1) WPi)b X22

11

1

2 n X12 1 XII

(15)
+ —— –———–——=0. (22)

weob X22 ltob W2 x22 ki)2b2 X22

Further, it is readily verified that (15) must always hold When w~O there are two ways in which these equations can

unless a. is zero. It follows that when a. is positive, it is a be satisfied.

monotonically-increasing function of frequency. Now if at

some angular frequency w., a. is zero for a particular surface- I y denotes Euler’s constant.
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Case n# 1 where

1) If all the elements of the dyadic remain finite, then mul- J.(air) Y.(ala) – J.(ala) Y.(air)
tiplying by W2and taking the limit yields v. (al?”) = (30)

Yn(ffla)

1 1 X122 – X11X22 1
— .— +—~
n—l q.lob X22 uab X22

J.(c21r) Yn’(ala) – J.’(ala) Y.(air)
Tn(alr) =

Y~’(a~a)
— (31)

2 X12

‘Xix”
(23)

CM2= CJ2W1— hz = Iioze– hz. (32)

These expressions must satisfy the boundary condition ex-

2) If Xll = O (l/wz) with X12 and Xzz finite, then we have pressed by (1) at r= b. So substituting (29) into (1), and

n 1 X122 — X11X22 1 XII
Identifying term by term, yields the following for the reac-

— —— + ——=0; (24) tance dyadic
W2 copob x22 ko2b2 X22

[

nhZb

()

1
so solving for X1l gives X = —apob.r. (c, v) + ~

1
— — 101,9
coel ‘$n(c,y)

nlc02b2Xlz2
X11 =

nk02b2X2s — w2wpob
(25) lnhl lnhl

+—— — 181,— — —— 1.10
(.OClCzyz‘gn(c,y) Wel Czyz&(c, y)

Case n= 1
11

+— — 1,1,

1) If the elements of the dyadic tend to infinity as log w,
Welb &.(c, y)

then we get where

[

1 X122 – X11X22
210g; + —— + ;:T &

1

b

wpob X22
c=—

a
————.

+; -=0. (26) y = ala = 4k02e – hza

2) If XII= 0(1/w2) with XIZ and X22 finite, we get for the
f-n(c, v) = : :;{:::)

solution
1 Jn’(cy) Y.’(y) – J.’(y) Y;(cy)

1

[

1 X12 2 — X11X22

1

1 X11
.—

—— +—— — = O; (27) Cy Jn(cy) Y.’(y) – J.’(y) Ym(cy)

$ copob X22 ko2b2 Xtz

.$.(c) v) = + :::::/
upon solving for X11 yields

k02b2Xls2
x,, = (28) 1 Jn’(cy) Y.(y) – J.(Y) yn’(cY)

ko2b2X22 – wzupob
.—

Cy J.(cy) Y.(y) – J.(Y) Y“.(CY)

APPLICATION TO DIELECTRIC-COVERED WIRE Applying the condition (23) we get:

Consider the dielectric-clad rod shown in Fig. 2. The field

expressions for the dielectric region a< r< b Case n# 1

[ 1
1

Z, = – ~ a~’u~’(air) + ‘Py b~’r~’ (air) F.
1) f.(cy) + e.gn(cy) = — – Z .

al ~lzr
n—1 C2Y2

[ 1

This last equation can be solved numerically as indicated in
Ed = q an’v~(a,r) + i M bn’~n’(a,r) F. Fig. 3. For the condition given by (25) for w~O we have

al% al

(33)

(34)

(35)

(36)

(37)

(38)

E, = a~’v~(alr)F~ (29) 2) Jn(cy) Y.’(y) – Yn(cy)Jn’(y) = o. (39)

(For the proof that y= O is not a solution see the Appendix.)

Case n= 1

Equation (26) gives

(40)
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Fig. 2. Dielectric-covered wire.
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Fig. 3. Solution of (38),

which is equivalent to

JI(cg) l’,(y) – Y,(cy)J,(y) = o (41)

or

Jl(cy) Y,’(y) – Yl(cy)J1’(y) = o. (42)

The condition (28) gives for this case

Jl(cl/) Y1’(!/) – Yl(cY)J1’(!/) = o (43)

with another solution y= O (see Appendix).

Hence, any solution pn,~ or p.,~’ of (38), (39), (42), and

(43) determine the cutoff points for the two sets of modes of

propagation on the structure. Further for the case n= 1 an

extra solution is given by y= O.

According to Zelby’s nomenclature [6] the point pn,n de-

termines the cutoff points for the mode HEn,~. Similarly

the solutions pn ,~’ are the solutions for the cutoff points for

the mode EHm,~. This set of modes is supplemented by the

extra mode El, Owhich has no cutoff frequency.z

Rearranging (35) the cutoff wavelength is given by, for the

different modes,

~~a~e — 1
A. =

‘pn,m or Pn,m’

(44)

The variation of the guided wavelength & with frequency

can be established in the following manner. Substituting the

dyadic elements into the characteristic equation gives

+.’(w) – x.(w) [i-lt(c>Y) + +l(c, ?4)1 + 4.(C, !J).$.(CY)

Also rearranging (9) and (35) gives

(45)

h2 Czyz + 6W2

~=
(46)

Czyz+ W2

Substituting (48) into (47) yields

*.’(W) – x.(w) [r”,(w)+ C&n(c,Y)] + &($ Y)r,k(c, Y)

[

E+l
— ~2

;+—

1

+: .()
~2y2w2 ~4y4

(47)

and rearranging (9) and (48) gives

a [W2 + c2y2]1/2
—=

2TC4E – 1 “
(49)

lo

Therefore, solving (47) for w’, by assuming a set of values of

y all greater than p~,~ or p~,~’, we obtain the variation of the

guided wavelength through (48) and (49). A solution has

been calculated in this manner for the two modes EH1,O and

EHI,l. The results are shown in Fig. 4.

MEASUREMENTS

Measurements were made on dielectric-clad rods using a

surface-wave resonator excited by a series of slots fed by a

circular waveguide propagating the TE1l mode at X-band.

The resonator was 18 inches long by 1 foot square.

The two dielectric-clad surface waveguides used in the

measurements were made of solid brass core of + inch and

+ inch, covered with polystyrene to diameters of+ inch and

1* inches. The ratio of the diameter was kept constant to 2.5.

A photograph of the experimental setup is shown in Fig. 5.

The information on the EHIO mode was obtained by re-

cording the resonance frequency and the number of half

2The case n = Ohas been solved by Karbowiak [1].
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Fig. 4. Guided wavelength variation.

Fig. 5. Experimental setup.

cycles in the length of the resonator. It was noticed while

making measurements on the EHIO mode that above a cer-

tain frequency there arose a series of resonances where the

amplitudes of the modes of the standing-wave pattern varied

with distance along the guide. This was due to the two sur-

face-wave modes EHIO and EHII beating together. The

guided wavelength ~, for the EHII mode was obtained

through the measurements of the beat wavelength.

The results are shown in the dimensionless curves of Fig. 4.

CONCLUSION

The general theory developed in this paper yields the cut-

off condition for any mode of propagation on any cylindrical

surface waveguide. Also, this theory reveals the existence of

a mode without cutoff point. This theory has been applied

to the case of the dielectric-covered rod.

APPENDIX

For small values of y the functions f.(cy) and &(cy) have

the following asymptotic developments:

C2”+1 1
in(c, Y) = n- -@ + 0(1). (51)

Substituting these expressions into the characteristic equa-

tion with the appropriate value of n yields:

Case n# 1

n 1

[

1
— — ;+

n—lw2 2(n – 1)1
[

e(cz” + 1) + c’” – 1 n

1-

nz(e + 1)
. ——

~2n _ 1
C2” + 1 Ctyt – C’y’w’

= O, (52)

Case n= 1

“[‘C(C2+ 1)

1

C2—1 1

.2-1 +;= ~+;;;=o” (53)

As the term l/2(rz – 1) and log yw/2 are negligible com-

pared to n/w2 and l/w2, when w+O, one obtains

Case n# 1

[

6(C’” + 1) c’” – 1
c2y2 = n(n — 1)

&. _ 1 + ‘— 1+,+1, (54)
Cz” + 1

Case n= 1

C(C2+ 1) c2_l

+——— +6+1
C2—] C2+1

Czyz = — . (55)

2 log;

It is evident from these equations that when waO, y= O

is a possible solution if, and only if,

n=O or n=l.
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