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Higher-Order Cylindrical Surface-Wave Modes

JEAN Y. SAVARD

Abstract—A general theory of the propagation of higher-order modes
on cylindrical surface-wave structures is examined and applied to the
dielectric-clad rod.

A theory is developed in which the boundary conditions at the guide
are specified by an impedance dyadic. The characteristic equation for the
structure is then obtained in terms of the elements of the dyadic. The
equation is solved and yields a set of conditions which are satisfied by the
values of the dyadic elements at the cutoff points for each of the higher-
order modes.

A mode without a cutoff frequency is shown to exist on the structure
used. The relationship between the guide wavelength and frequency has
been verified experimentally.

INTRODUCTION

CONSIDERABLE amount of work has been done

A both on the theoretical and experimental aspects of

propagation on single-wire transmission lines since

1930. Many structures have been found to be capable of sup-

porting a surface wave. Among these are the dielectric rod,

the dielectric-coated conductor, and the corrugated wire
[1]-[5].

Barlow and Karbowiak [1] have investigated the dielec-
tric-coated conductor and the corrugated wire for the special
case of the symmetrical modes. Their analysis was based on
surface impedances of the different structures used. The case
of higher-order modes on the dielectric-clad rod was at-
tempted by Hersch [2] by matching the fields at the ap-
propriate boundary. However, his numerical calculations
are in error.

Work on the dielectric rod for the symmetrical and higher-
order modes was first done by Jouguet [3] using an analytic-
graphical method based on the behavior of the fields near
the cutoff region. Brown [4] has obtained similar results by
using an extension of the surface impedance concept.

This paper is based on a generalization of the surface im-
pedance method. The properties of the guiding structures
are specified by an impedance dyadic enabling the character-
istic equation to be derived as a function of the elements of
the dyadic. This equation is then examined to obtain the
conditions satisfied by the elements of the dyadic near the
cutoff region. The method is very general and has the ad-
vantage of giving the solutions for any cylindrical structure
provided the radiation condition at infinity is satisfied.

The theory has been applied to the dielectric-clad rod.
Finally an experimental verification was obtained of the rela-
tionship between the guide wavelength and frequency for the
dielectric-clad rod.

IMPEDANCE DYADIC METHOD

Consider a reciprocal surface waveguide of circular sym-
metry (Fig. 1). Suppose the boundary conditions satisfied
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Fig. 1. Surface waveguide.

by the fields at the interface between the waveguide and the
air are

Er={X-[l, X Hy] 1

where E; and Hyp represent the tangential components of
the vectors E and H on the cylinder at =25, I, is the unit
vector normal to the cylinder and X is the impedance dyadic
defined as

X = Xully + X12hl.
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where
F, =exp {z[no — hz + wt]} 4)
Ot2 = w2p,o€o bl h2 = ICOZ - hz. (5)
In these expressions ‘> denotes a derivative with respect to
the argument ar.
As surface-wave propagation is considered and as the

fields are described by H,®(ar) for the radial dependence, it
follows that & must have an argument of «/2, so

o = iayp. (6)

Substituting (3) and (6) into (1) and eliminating the con-
stants a,° and b,° yields the following for the characteristic
equation

. ¢ 1
a2w) — Puw) l: X 11X 22 4 1 :‘

wp.(]b Xzz weob X~22
ket [ \w? b w Xps b2 Xpod
where
1 H,Y(Gab) 1 H,Y(qw)
Yalw) = A L@

foagh H,DGad) w H,® (iw)

Since « has an argument of =/2, this implies that A must
exceed ko and that w=aeb must be positive. Further, the
group velocity which is given by dw/dh must be less than V,
the velocity of electromagnetic waves in free space. Hence,
since

ag? = h? — ke? )
day dh
= h— —~ . 10
[o1) do de Wito€p ( )
But,
dh S 1 — (11)
do =~V Hoeo
and, therefore,
deo .
ay— 2> h\/Moéo — WHo€o (12)
dw
> (h — ko)v/poeo (13)
since,
h > ko (14)
it follows that
dao
ao— > 0. (15)
dw

Further, it is readily verified that (15) must always hold
unless aq is zero. It follows that when a4 is positive, it is a
monotonically-increasing function of frequency. Now if at
some angular frequency w., o is zero for a particular surface-
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wave mode, it follows that w, cannot be positive for frequen-
cies less than w,. However, there is the possibility of e, being
zero for a range of frequency below w,, but the surface wave
corresponding to a zero is not a true surface wave. We then
say that if «, is zero at w,, then w, is the cutoff frequency for
the particular surface wave considered for frequencies
greater than w.. Hence, it is concluded that, at w., the cutoff
frequency for a particular surface-wave mode,

w— 0. (16)

It is now possible to proceed, on this hypothesis, to the deter-

mination of the conditions to be satisfied at «, by the ele-

ments of the reactance dyadic in the characteristic equation.
Using the asymptotic development of H,®(iw) for w—0

. 2 w yw
— e H D () ~— — < + w log 5 + O (w? log w)!
w

n=1) 17
arsoar=o-(2) + o]
(n#1) (18)

it is easily verified that

1 yw
valw) =% —log ==

+0 [uﬂ(l T log lzqfﬂl (n=1) (19)

Valw) zgg + o) (1)  (20)

2(n — 1)

Substituting (19) and (20) into the characteristic equation
yields for n=1

2 w 1 w 1 X2 — XX
*—log%—k[——logl—][ 12 11X 22
w

w? 2 2 g X3
1 1 2 1 X 1 X
+ ~] +o— = 2 —=0 (21
wéob X22 kob ’U)2 Xzz ]{?()2172 X22
and for ns=1
n 1 [n n 1 :”: 1 X1 — X1 X0
n—1 w? w? 2('n - 1) wp.ob X
1 1 2 n X 1 X
—-]——— e
wéob X22 kob w? X22 ]{;02172 X22

When w—0 there are two ways in which these equations can
be satisfied.

1 4 denotes Euler’s constant.
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Case n#1

1) If all the elements of the dyadic remain finite, then mul-
tiplying by w? and taking the limit yields

1 . 1 X122 - X11X22 1 1
n—1 w/.tob ng weob ng
2 X
c o ae (23)
kob X22
2) If Xi1= O(1/w?) with X, and X, finite, then we have
ﬁ 1 sz—Xan_l_ 1 )&=0; (24)
w? wyob Xzz k02b2 X22
so solving for Xy gives
nlo*h2 X 192
" L (25)

’nko2b2X22 - ’w2w/.l.()b

Casen=1

1) If the elements of the dyadic tend to infinity as log w,
then we get

yw 1 X2 — X1uXoe 1 1
2log—5—+

wuob Xzz weob E;

n 2 X 0. (26)
kb Xo2

2) If X1,= O(1/w?) with X, and X;, finite, we get for the
solution

17 1 X — XuXoe 1 X
Zu?[wuob S }Jr o = % @
upon solving for Xy, yields
ko202 X 1o?
- ko?b2X 59 — wiwueb .

Xll

(28)

APPLICATION TO DIELECTRIC-COVERED WIRE

Consider the dielectric-clad rod shown in Fig. 2. The field
expressions for the dielectric region a<r<b

nh n
E,=|—— an'm'(aﬂ“) + ﬂll:“ bn/'rn,(alr)]F”

o or

™ nh . Wi
Es = Tan'vn(aﬂ‘) + ¢ — b () | Fa

[ o o1
Ez = anlun(alr)Fn (29)
r wen .
H,.=| — @' volanr) — 1— b1 (ar) | Fa
L ay’r (250
m wa nh
Hy =| —1—a, v,/ (ar7) +— bn'rn(aﬂ"):| Fn
L (s3] 0{127'

Hz = bnvn(alr)Fn
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where
yalarr) = (a1r) Yo(cua) (010) Yn(ear) (30)
Yn(oqa)
I Y, —J.) Y.
Tn<a17‘) _ (0&17’) (ala> (ala) (0{17') (31)
Yn’(cqa)
a1? = wluoey — h? = ko?e — A (32)

These expressions must satisfy the boundary condition ex-
pressed by (1) at =5. So substituting (29) into (1), and
identifying term by term, yields the following for the reac-
tance dyadic

nh\? b 1
X = l:-*wuobfn(C, y) + ( > — :'1916
WeEL £ﬂ<cy y)

CZyZ
1 nh 1 1 nh 1
- oy —— —_ - T 1z10
wer ¢y Ele, y)  we ¢y Eu(e, )
1 1
— L1, (33)
web En(cy y)
where
b
c=— (34)
a
Y = awa = Ve — hia (35)
1 7(c, y)
g‘n(c: y) =
¢y 1a(c, )
_ L LY@y — TS @) V' ey) (36)
cy Jauley) Ya' (y) —J) W) Yauley)
1 an(c) ’!/)
En(c: y) =
cy valc, y)
Applying the condition (23) we get:
Case n=1
1 2n
D) faley) + ebaloy) = —— — — - (38)
n—1 c¥?

This last equation can be solved numerically as indicated in
Fig. 3. For the condition given by (25) for w—0 we have

2) Jule) Yo' () — Yale)Ja'(y) = 0.

(For the proof that y=0 is not a solution see the Appendix.)

(39)

Case n=1

Equation (26) gives

nle, y) + ebuley) = » (40)
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Fig. 2. Dielectric-covered wire.

Enlc,y+ ; ;
Egn(C,y) i 1
1 !
| |
i
| I 1
[ b
! I :
1 { : |
Pn,l ' L !
| /1Pn,2 'Pn,3 y Y
. | | |
I t "
I 1 '
! 1 |
: | '
' !
| |
| i !
| !
Fig. 3. Solution of (38).
which is equivalent to
Jiley) Ya(y) — Yiley)Ju(y) = 0 (41)
or
Jiley) Yi'(y) — Yaley)Ji/'(y) = 0. (42)
The condition (28) gives for this case
Jilen) Yi'(y) — Yaley)Jo'(y) = 0 (43)

with another solution y=0 (see Appendix).
Hence, any solution p, . or p..." of (38), (39), (42), and
(43) determine the cutoff points for the two sets of modes of
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propagation on the structure. Further for the case n=1 an
extra solution is given by y=0.

According to Zelby’s nomenclature [6] the point p, ., de-
termines the cutoff points for the mode HE, ,. Similarly
the solutions p, ,,” are the solutions for the cutoff points for
the mode EH,, .. This set of modes is supplemented by the
extra mode E;, which has no cutoff frequency.?

Rearranging (35) the cutoff wavelength is given by, for the
different modes,

2rav/e — 1

A =
Drorm OF Do’

(44)

The variation of the guided wavelength A, with frequency
can be established in the following manner, Substituting the
dyadic elements into the characteristic equation gives

¥a2(w) — ) [£a(e, ¥) + ebale, 9)] + ekale, »E(en)

n2h2< 1 " 1 )2 0 45)
Ko \w? 2 -
Also rearranging (9) and (35) gives
h2 021 2 _I_ w2
e (46)
k02 c2y2 + w2
Substituting (48) into (47) yields
‘pn2(w) - ‘I/n(w) [g-n(w) + efn(cy y)] + eEn(C, y)fﬂ(c: y)
1 e+ 1 €
— n? [; + g + @] =0 (47)
and rearranging (9) and (48) gives
)\ w? + 62 2 /2
2 l:__;_y_:l (48)
Ao ew? 4 cy?
a wZ _J|_ 21 2|1/2
~ = [__~c‘/l.« . (49)
Ao 27(’6\/6 —1

Therefore, solving (47) for w, by assuming a set of values of
y all greater than p, . Or p,..’', We obtain the variation of the
guided wavelength through (48) and (49). A solution has
been calculated in this manner for the two modes EH; o and
EH, 1. The results are shown in Fig. 4,

MEASUREMENTS

Measurements were made on dielectric-clad rods using a
surface-wave resonator excited by a series of slots fed by a
circular waveguide propagating the TE,;; mode at X-band.
The resonator was 18 inches long by 1 foot square.

The two dielectric-clad surface waveguides used in the
measurements were made of solid brass core of ¥ inch and
1 inch, covered with polystyrene to diameters of % inch and
1% inches. The ratio of the diameter was kept constant to 2.5.
A photograph of the experimental setup is shown in Fig. 5.

The information on the EH;, mode was obtained by re-
cording the resonance frequency and the number of half

2 The case n=0 has been solved by Karbowiak {1].
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Fig. 4. Guided wavelength variation.

Fig. 5. Experimental setup.

cycles in the length of the resonator. It was noticed while
making measurements on the EHy, mode that above a cer-
tain frequency there arose a series of resonances where the
amplitudes of the modes of the standing-wave pattern varied
with distance along the guide. This was due to the two sur-
face-wave modes EH;, and EH,;; beating together. The
guided wavelength ), for the EH,; mode was obtained
through the measurements of the beat wavelength.

The results are shown in the dimensionless curves of Fig. 4.

CONCLUSION

The general theory developed in this paper yields the cut-
off condition for any mode of propagation on any cylindrical
surface waveguide. Also, this theory reveals the existence of
a mode without cutoff point. This theory has been applied
to the case of the dielectric-covered rod.

APPENDIX

For small values of y the functions ¢.(cy) and £,(cy) have
the following asymptotic developments:

ch —_

11
— 4+ o) (50)

CZn + 1 c2y2

&l y) = n
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c¢r4+1 1 + oM
e — 1 ey '

&ule,y) = n (51)

Substituting these expressions into the characteristic equa-
tion with the appropriate value of 7 yields:

Case n#1

n 1 l:n+ 1 :l
n-—1 w? w2 2(m — 1)

e +1) ¢»—17 n n*e+ 1
[ LD Lo, o
cZn —_ 1 CQn + 1_ c2y2 c2y2w2 .
Case n=1
2 YW 1 ~yw]
— logi— 4 [~ — log —
w? & 2 w2 & 2
e +1) 2—171 e+1
I: + i|—~+——-=0. (53)
c? — 1 e+ 1 lety?  eytw?

As the term 1/2(n—1) and log yw/2 are negligible com-
pared to n/w? and 1/w?, when w—0, one obtains

Case n¥#1
e 4+ 1) e —1
% =nn — 1 1], (54
e e SRR MCY
Casen=1
ele? + 1) 62—1+ 41
e—1 et S
cyt = — (55)
yw
2log —
& 2

It is evident from these equations that when w—0, y=0
is a possible solution if, and only if,

n=0 or n=1.
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